Spatiotemporal prediction of COVID-19 cases using inter- and intra-county proxies of human interactions
Document Type
Article (peer-reviewed)
Publication Date
11-8-2021
Abstract
Measurements of human interaction through proxies such as social connectedness or movement patterns have proved useful for predictive modeling of COVID-19, which is a challenging task, especially at high spatial resolutions. In this study, we develop a Spatiotemporal autoregressive model to predict county-level new cases of COVID-19 in the coterminous US using spatiotemporal lags of infection rates, human interactions, human mobility, and socioeconomic composition of counties as predictive features. We capture human interactions through 1) Facebook- and 2) cell phone-derived measures of connectivity and human mobility, and use them in two separate models for predicting county-level new cases of COVID-19. We evaluate the model on 14 forecast dates between 2020/10/25 and 2021/01/24 over one- to four-week prediction horizons. Comparing our predictions with a Baseline model developed by the COVID-19 Forecast Hub indicates an average 6.46% improvement in prediction Mean Absolute Errors (MAE) over the two-week prediction horizon up to 20.22% improvement in the four-week prediction horizon, pointing to the strong predictive power of our model in the longer prediction horizons.
DOI
10.1038/s41467-021-26742-6
Language
English
Recommended Citation
Vahedi, Behzad, Morteza Karimzadeh, and Hamidreza Zoraghein. 2021. "Spatiotemporal prediction of COVID-19 cases using inter- and intra-county proxies of human interactions," Nature Communications 12: 6440.
Project
Responding to the COVID-19 Pandemic
Comments
Related dataset