Ezrin is an actin binding protein that regulates Sertoli cell and spermatid adhesion during spermatogenesis

Document Type

Article (peer-reviewed)

Publication Date

2014

Abstract

During spermatogenesis, the transport of spermatids and the release of sperms at spermiation and the remodeling of the blood-testis barrier (BTB) in the seminiferous epithelium of rat testes require rapid reorganization of the actin-based cytoskeleton. However, the mechanism(s) and the regulatory molecule(s) remain unexplored. Herein we report findings that unfold the functional significance of ezrin in the organization of the testis-specific adherens junction at the spermatid-Sertoli cell interface called apical ectoplasmic specialization (ES) in the adluminal compartment and the Sertoli cell-cell interface known as basal ES at the BTB. Ezrin is expressed at the basal ES/BTB in all stages, except from late VIII to IX, of the epithelial cycle. Its knockdown by RNA interference (RNAi) in vitro perturbs the Sertoli cell tight junction-permeability barrier via a disruption of the actin microfilaments in Sertoli cells, which in turn impeded basal ES protein (eg, N-cadherin) distribution, perturbing the BTB function. These findings were confirmed by a knockdown study in vivo. However, the expression of ezrin at the apical ES is restricted to stage VIII of the cycle and limited only between step 19 spermatids and Sertoli cells. A knockdown of ezrin in vivo by RNAi was found to impede spermatid transport, causing defects in spermiation in which spermatids were embedded deep inside the epithelium, and associated with a loss of spermatid polarity. Also, ezrin was associated with residual bodies and phagosomes, and its knockdown by RNAi in the testis also impeded the transport of residual bodies/phagosomes from the apical to the basal compartment. In summary, ezrin is involved in regulating actin microfilament organization at the ES in rat testes.

DOI

10.1210/en.2014-1163

Language

English

Share

COinS