2008

2008 IPM Annual Report—Progress on the Path to HIV Prevention

International Partnership for Microbicides

Follow this and additional works at: https://knowledgecommons.popcouncil.org/series_ipm
How does access to this work benefit you? Click here to let us know!

Recommended Citation

This Annual Report is brought to you for free and open access by the Population Council.
Progress on the Path to HIV PREVENTION
Contents

2 Progress on the path to HIV prevention
6 Promising microbicide candidates
10 Clinical trials
14 Access
16 Partnerships
18 Financial Report
19 Donors
20 Board of Directors
20 Scientific Advisory Board, Executive Committee
21 Senior Management Team
22 2008 International Partners
24 Selected Scientific Publications and Presentations Supported by IPM in 2008
The year 2008 will be remembered for a number of things — among them an economic crisis that tested the foundation of the global financial system and, despite receiving less public attention, the HIV pandemic continued to overwhelm our best efforts to control it.

Treatment advances have been revolutionary, but treatment alone will not resolve the HIV/AIDS crisis. The public health community has responded by focusing its attention and scientific ingenuity on HIV prevention, because it offers the best long-term solution to control the pandemic. We have also seen a new consensus on the need to prioritize the development of microbicides designed to protect women from HIV. From the outset, IPM has focused on advancing the most promising microbicides that are based on highly potent antiretrovirals (ARVs). In 2008, IPM added two new ARV compounds to its portfolio. We also intensified work on developing microbicides based on combinations of drugs.

Most important, we moved forward IPM’s most clinically advanced microbicide candidate, dapivirine, in several forms — including gels, films and a novel vaginal ring that could offer longer-lasting protection. Understanding the types of products women would really want and use is essential, and IPM is learning more about women’s preferences in ongoing acceptability studies.

To prepare for upcoming large-scale clinical trials, IPM greatly expanded its clinical programme and partnerships with local communities. Long after our studies are completed, our investments in facilities and training programmes will offer benefits to communities — from education to training to infrastructure. Looking even further ahead, we began devising manufacturing and access strategies so that once microbicides are proven safe and effective, they can quickly reach women who need them.

We are mindful of the ongoing global economic crisis and are enormously grateful for our donors, who demonstrate a strong commitment to HIV prevention and to giving women tools to protect themselves from this virus. In 2008, IPM received new and continued support from 14 donors — our broadest base of support ever. We are heartened by this confidence in IPM and our scientific strategy, especially given the ongoing support needed to conduct trials and eventually put a product into women’s hands. In this economic climate, the microbicide field can expect ever-greater scrutiny, and IPM will continue to be a careful steward of our donors’ support.

We are also grateful for the work of our Board of Directors, our scientific advisors and our dedicated staff. We welcome the leadership of our incoming Board Chair, Dr. Alex G. Coutinho, Executive Director of the Infectious Diseases Institute at Makerere University in Uganda. IPM also has many partners around the world, from our colleagues in the private sector to government and civil society and to the women who volunteer for IPM studies — the true leaders of the HIV prevention effort. Our critical advances this year would not have been possible without all of this extraordinary commitment.

In this report, we are pleased to highlight IPM’s progress in developing microbicides and invite you to join us in sustaining this momentum for the year ahead.

Dear Friends and Colleagues:

Els Borst-Eilers, MD, PhD
Chair of the Board

Zeda F. Rosenberg, ScD
Chief Executive Officer

Deanna de Trizio, MD
Executive Director
As IPM prepares for large-scale trials of promising drug candidates and helps build capacity at local research centres in Africa, it is fulfilling its mandate to support the development of products that would protect the health of millions of people and contribute to global development. Building and renovating local research facilities, raising HIV awareness, training research centre staff, and supporting linkages among research centres and public health clinics — all conducted with broad community support — are designed to benefit participating communities. These efforts are moving ahead today as IPM and its global partners make progress in preventing HIV tomorrow.

Progress on the path to HIV prevention
The pressing need for prevention

Revolutionary advances in treating AIDS must be complemented with progress in HIV prevention to defeat the epidemic. According to the UN, for every two people who receive treatment, five more people are newly infected, and only one-third the number of people who need AIDS treatment receives it. When new infections occur in women — and approximately 60 percent of those infected with HIV in sub-Saharan Africa are women — entire families and communities suffer. In developing countries, the local food supply (mostly produced by women) often shrinks. Children, especially young girls, are called upon to care for the family, even if that means leaving school or wage-paying work. The need for microbicides is as great now as ever, as HIV continues to threaten individuals, families, communities and the world we share.

Progress in the face of challenge

The development of any new drug is time-consuming, expensive and scientifically challenging. Temporary setbacks are an expected part of the process. To expedite development of promising technologies like microbicides, IPM follows the product development partnership (PDP) model, which synchronizes efforts across the public and private sectors. IPM collaborates with numerous partners — governments, foundations, universities, researchers, pharmaceutical companies, policymakers, advocates and the women living in the communities where trials are taking place. Those coordinated efforts have brought IPM to the threshold of large-scale clinical testing of promising ARV-based microbicide candidates. To ensure that microbicides, once developed, are readily available to women who need them most, IPM and its partners are also actively preparing the way for future regulatory approval, and manufacturing and distribution of a microbicide product when it is proven to be safe and effective.

IPM has been instrumental in advancing research and development of next generation microbicide compounds based on antiretrovirals (ARVs), the same drugs used successfully to treat HIV/AIDS in millions of people. ARVs offer important possibilities for HIV prevention because they specifically target HIV and work by protecting host cells from virus attack. The most advanced ARV-based compounds, used alone or in combination with other ARVs, are now moving forward through the microbicide development pipeline in a variety of formulations.
In 2008, public and private donors to IPM conducted an independent evaluation of IPM’s effectiveness, efficiency, sustainability and impact. After thoroughly examining IPM’s work from 2003 to 2007 — from its strategic direction to its operating systems and myriad aspects of its drug development programme in between — the evaluation concluded that “IPM has recorded impressive accomplishments and has positioned itself well to reach its goals of developing safe and effective microbicides to prevent HIV.”

The study particularly looked at how IPM’s mission has evolved since it was founded in 2002, as it moved “into a product developer, addressing the gap in the field at the time for greater focus on antiretroviral-based microbicides. This evolution was appropriate …

The evaluation concurs with this vital interpretation of IPM’s role.”

While much difficult work still lies ahead, the study concludes that IPM has “contributed significantly toward the goal of developing safe and effective microbicides, and peers recognize its accomplishments as ones which would not otherwise have been achieved.”

The five-year evaluation also included several recommendations. IPM already has made progress in a number of these areas, including developing a formalized product/formulation management process, strengthening IPM’s clinical team and updating its strategic plan (read the full evaluation report and IPM’s management response at www.ipm-microbicides.org).

HIV/AIDS has had a devastating effect on my community. The loss of life and productivity has led to poverty. The ever-increasing cases of child-run households and stigma have also become a major concern. The training I am receiving to work at the research centre will help me address those concerns. Stigma, for instance, has led to poor access to treatment, and different organizations in my community are working collaboratively to improve this situation. I have learned how to reach out to my community and effectively mobilize its support. My training will enable me to respond to the future needs of my community and my country.

— Kwezi Shumi, Community Liaison Officer, Be Part Yoluntu Centre, Mbekweni, South Africa
I’ve seen many changes in the community where an IPM study is going to take place. With the building in the area, community members see this as ‘someone’ coming in to do something in their community. The clinic that has been built for the IPM study has brought staff who are creating stronger relationships with the government health workers. The IPM community educator assists in HIV prevention talks at the government clinics and in the larger community. The clinic staff also help in providing family planning and antenatal services while waiting for the implementation of the study.

— Linly Seyama, Community Liaison Officer, Johns Hopkins Research Project, Malawi College of Medicine, Blantyre, Malawi
Preparing communities for safety and efficacy trials.

With large-scale Phase III efficacy trials of IPM’s most advanced candidates, dapivirine ring and gel, scheduled to begin in 2011, IPM is making preparations in the communities, a significant undertaking. Clinical trials rely on coordination with governments and communities where they take place — where HIV/AIDS has been most destructive — as well as on tens of thousands of volunteers and the development of essential local infrastructure and skills. This past year, IPM and its partners were able to increase the number of participating research centres and further develop the infrastructure and capacity of existing centres.

Other advances, from development to launch.

At the same time IPM’s most advanced candidates are moving forward, two new candidates entered the microbicide R&D pipeline, potentially increasing the number of options that eventually will be available to women for HIV prevention. IPM and its partners also continued to support efforts to strengthen regulatory approval pathways and identify full-scale manufacturing, distribution and product launch strategies, preparing the way for eventual product access. IPM outreach activities took on special importance this past year as effectiveness trials approach. IPM continued to receive strong and sustained political and financial support, essential for ongoing product development efforts.

The path to promising microbicide candidates

IPM is a leader in global efforts to identify new microbicide compounds that safely and effectively combat HIV, and to focus resources on the most promising candidates. Working with partners in academia and industry, IPM coordinates diverse worldwide drug development efforts and directly funds many projects. By closely evaluating candidates and taking into account the broader pipeline of the entire microbicide field, IPM makes choices that optimize resources and scientific strategies.

A member of the community mobilizers group, which educates community members about clinical trials, works with Projet Ubuzima, an IPM-sponsored research centre, in Kigali, Rwanda. (Geoff Oliver Bugbee)

Richard Lord
Ongoing research for new options

Even after the first safe and effective microbicide is developed, work will continue to increase potency and offer a variety of product options. The reasons are many: as with any drug, a specific microbicide product may work better in some women than in others, and a particular method of using a microbicide may appeal to some people more than others.

Taking ARVs forward

From its beginning, IPM has concentrated its efforts on what has become one of the most promising strategies in the field: ARV-based compounds. IPM and its partners are investigating these next generation microbicides, to be administered singly or in combination with other drugs. IPM is also developing a range of innovative topical dosage forms, including daily use gels, films, gel capsules and combination vaginal tablets as well as longer-acting vaginal rings that would be replaced monthly. Currently, IPM has royalty-free licensing agreements with five pharmaceutical partners for eight microbicide compounds.

New compounds, important progress

This past year, IPM and its partners made significant additions to the pipeline with two new compounds that interrupt HIV infection early in the process. IPM entered into a royalty-free licensing agreement with Pfizer for a new ARV compound called maraviroc. Already approved by the US Food and Drug Administration (FDA) and fully licensed for use as an HIV therapy, maraviroc has established safety and efficacy data that may speed its development as a microbicide. Known as a CCR5 blocker, maraviroc prevents HIV from gaining entry to the host cell.

IPM also entered into another royalty-free agreement with Merck for L’664, an ARV compound known as a fusion inhibitor that prevents HIV from attaching to the host cell.

Prioritizing resources:
Pipeline Growth & Management

Which compounds deserve to be explored further? Which compounds no longer merit study? This past year, IPM formalized an algorithm for evaluating proposed compounds. The system quantifies a compound’s potential based on its mechanism of action, stage of development, potency, safety, prior human exposure, capacity to formulate and cost of manufacture.

Regularity applied to compounds in the pipeline as new data become available, this decision-making process will continue to ensure the most responsible allocations of microbicide development resources and efficiently reduce time-to-market.

Production Technician Jessica Gonzalez scrapes gel from a Double Planetary PLM-15 Mixer, which is used to blend gel batches for use in vaginal applicators, at IPM’s CTM Facility in Bethlehem, Pennsylvania, USA. (Andrew Loxley, Felt Photography)
Moving ahead in the pipeline

Several different formulations of IPM’s most advanced candidate, dapivirine — which inhibits replication of HIV after the virus enters the cell — continued to move through the pipeline. Studies in 2008 testing the feasibility of a dapivirine vaginal ring as well as gel safety and pharmacokinetics, or PK (which reveals how the body processes and utilises a compound), all support continued development. Lead dapivirine gels with demonstrated stability over 12 months are now being produced for expanded safety and PK studies. In addition, IPM is preparing for preclinical studies of dapivirine film and a dapivirine vaginal tablet.

Also progressing in the pipeline is tenofovir, another drug that interrupts viral replication of HIV once inside the cells and which IPM acquired from Gilead in 2006. Tenofovir gel was the focus of a PK study and a male tolerance study — both conducted in partnership with CONRAD in 2008 — that also supported continued development.

Other compounds moving through the pipeline include an entry blocker that prevents HIV from attaching to the host cell, which IPM obtained from Bristol-Myers Squibb.

Taking combination drugs forward

Developing microbicide candidates that contain drug combinations to prevent HIV on several fronts simultaneously was also a priority for IPM in 2008. To better understand how well combinations in general may work, IPM intensified studies of dapivirine along with a range of compounds.

A combination including dapivirine and maraviroc is currently the most advanced in IPM’s pipeline of potential combination products. Maraviroc is an FDA-approved therapeutic that, like dapivirine, is stable and affordable. IPM has a robust, ongoing preclinical programme for the dapivirine — maraviroc combination, with safety and PK trials scheduled to launch in 2010. IPM is studying that combination in sustained-release forms such as the vaginal ring and in daily-dosage forms, such as the gel or film. IPM has also initiated work on a combination maraviroc — tenofovir film.

From the earliest stages of a new compound’s licensing or a new formulation’s design, the feasibility of manufacturing helps determine the candidate’s viability. In 2008, IPM began developing a manufacturing strategy for large-scale production of dapivirine rings and gels, estimating the potential demand for the products and the requirements of Phase III clinical trials. IPM hopes to build relationships with manufacturers in a variety of countries to produce potential products, and in 2008, IPM renovated and expanded its own production facility in Pennsylvania, USA. The facility now measures 15,500 square feet, and supports the Good Manufacturing Practice standard for production of rings and gels for Phase I/II trials. With its new ring manufacturing capacity, the facility is moving forward with producing and testing its own platinum-catalysed dapivirine vaginal rings using a new production process that enables large-scale production at the lowest possible cost.
IPM supports other development efforts

IPM provides direct funding for the study and development of a number of encouraging molecules and technologies. For example, IPM is working with ImQuest, NIH, CONRAD, the University of Utah and Particle Sciences, Inc. to implement a joint product development plan for ImQuest’s pyrimidinedione and zinc finger inhibitors. Pyrimidinedione compounds may prevent HIV infection by inhibiting viral replication and preventing HIV from attaching to target cells. Zinc finger inhibitors inactivate cell-free HIV and prevent HIV replication in infected cells.

IPM also supported work at the Mintaka Foundation as well as Drexel University on separate molecules that may prevent HIV from attaching to healthy cells and infecting them. In addition, IPM is funding work at Gynuity Health Projects to study whether topical oestrogen improves vaginal health and could make women less vulnerable to HIV. IPM also continues its work with St. George’s University of London on several projects, including the screening of molecules submitted by researchers and organizations from around the world for development as microbicides.

This year, Osel, Mapp Biopharmaceuticals, Oak Crest Institute of Science and the Research Triangle Institute received IPM support for studying and developing new microbicide dosage forms. Meanwhile, IPM’s scientific team continued investigation into new technologies that would improve product compliance.

IPM also conducted a two-day Toxicology and Formulation Workshop to develop a consensus on procedures for assessing the safety of candidate microbicides and the process for developing formulations that meet women’s needs.

Since 2004, IPM has obtained several non-exclusive royalty-free licenses from pharmaceutical companies to develop, manufacture and distribute ARV compounds as microbicides in developing countries. Ensuring access is a cornerstone of IPM’s drug development process. Once an effective microbicide is developed, these licensing agreements give IPM the full rights to distribute that product at no or low cost in developing countries.

Table: Compound List

<table>
<thead>
<tr>
<th>Compound</th>
<th>License</th>
<th>Year</th>
<th>Mechanism of Action</th>
<th>Development Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dapivirine</td>
<td>Tibotec</td>
<td>2004</td>
<td>NNRTI</td>
<td>Phase I/II (vaginal gel & ring)</td>
</tr>
<tr>
<td>M167, M872, M882</td>
<td>Merck</td>
<td>2005</td>
<td>CCR5 blockers</td>
<td>Pre-clinical</td>
</tr>
<tr>
<td>BMS793</td>
<td>BMS</td>
<td>2005</td>
<td>gp120 binder</td>
<td>Early pre-clinical</td>
</tr>
<tr>
<td>Tenofovir</td>
<td>Gilead</td>
<td>2006</td>
<td>NRTI</td>
<td>Phase I PK (CONRAD/IPM)</td>
</tr>
<tr>
<td>(IPM & CONRAD)</td>
<td></td>
<td></td>
<td></td>
<td>Phase II (CONRAD/CAPRISA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phase II (MTN, planned)</td>
</tr>
<tr>
<td>Maraviroc</td>
<td>Pfizer</td>
<td>2008</td>
<td>CCR5 blocker</td>
<td>Pre-clinical</td>
</tr>
<tr>
<td>L’644 peptide</td>
<td>Merck</td>
<td>2008</td>
<td>gp41 binder</td>
<td>Early pre-clinical</td>
</tr>
</tbody>
</table>

Mother and daughter outside of their home in Masiphumelele, South Africa. (Geoff Oliver Bugbee)
Preparations in 2008 helped to lay the complex groundwork for IPM’s microbicide development programme to move into expanded safety trials in 2009 and efficacy trials that are expected to begin in 2011. Preparing for these trials is a significant undertaking, one that can involve the creation of new facilities, infrastructure development, the training of local staff and leaders, and the engagement of thousands of individuals.

The path to clinical trials
Importance of HIV incidence studies

Preparations for Phase III efficacy trials begin with identifying potential clinical research centres in areas of the world hardest hit by HIV/AIDS, where women face the threat of HIV infection daily.

Carrying out epidemiological studies of HIV incidence in these communities helps research centres prepare for microbicide clinical trials and provides IPM and the countries with invaluable data on the rate of new HIV infections in specific areas. This also enables researchers to better measure the effectiveness of potential HIV prevention products in a future efficacy trial.

If HIV incidence rates are relatively high, a Phase III study may be conducted in the community. IPM and its local research centre partner then work with national and local officials, independent ethics committees and community leaders to prepare for the large-scale trial to secure the appropriate regulatory and ethics approvals, and to ensure community support from a wide variety of stakeholders.

Research centres prepare for clinical studies

Through exploratory visits and incidence studies, IPM has identified approximately 20 clinical research centres that could potentially participate in large-scale trials in Kenya, Malawi, Rwanda, South Africa, Tanzania, Zambia and Zimbabwe.

Building new partnerships, skills and capacities

Last year, workshops and other training helped research centres prepare their budgets for upcoming safety trials to launch in 2009, and covered topics in community engagement, infrastructure development and staff training.

The research centre teams were trained in areas such as clinical safety and data reporting, HIV testing and counselling, contraceptive and sexually transmitted infection counselling, quality assurance/quality control systems, Good Clinical Practice (GCP), Good Clinical Laboratory Practice (GCLP), laboratory project management, HIV rapid tests, financial processes and monitoring, and study participant recruitment and retention best practices, among other capacities. In addition, the September IPM Clinical Affairs Annual Meeting in Cape Town provided more training and a unique opportunity for 200 research centre attendees from a variety of countries in Africa, Europe and the United States to exchange ideas and best practices.

IPM and its partners completed studies that measured the incidence of HIV infection in Kigali, Rwanda, in which almost 2,500 women participated. Incidence studies in five locations in South Africa continue. Another notable 2008 study was a 28-day safety and pharmacokinetic study of two different dapivirine ring types. This was the longest clinical trial of a microbicide vaginal ring to date, and demonstrated that both ring types were safe and well-tolerated, and resulted in good distribution of drug in the female lower genital tract. In addition, a separate safety and acceptability study was conducted in Africa using placebo rings.
Designs for safe trials and reliable data

IPM refined or initiated a number of trial designs to speed time-to-market of a proven-effective microbicide without compromising safety. Now being further developed is an Adaptive Phase III study design, which evaluates preliminary effectiveness of a candidate at early stages of a trial to determine whether the product should continue to be evaluated.

IPM also updated its Guidelines for Conducting IPM Clinical Trials, which illustrate IPM’s commitment to meeting international and local ethical and regulatory standards, and maintaining support in communities in which the trials occur. It reflects an idea central to the fundamental purpose of microbicides and the clinical trial process — keeping women healthy and safe.

Also created last year was a new IPM clinical safety database that tracks key safety information. In addition, IPM developed a new private, interactive website for research centres that supports all aspects of their IPM-sponsored trials and provides a vehicle for sharing best practices.

<table>
<thead>
<tr>
<th>IPM CLINICAL TRIALS WITH ACTIVITY IN 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIAL</td>
</tr>
<tr>
<td>IPM 003</td>
</tr>
<tr>
<td>IPM 004</td>
</tr>
<tr>
<td>IPM 007</td>
</tr>
<tr>
<td>IPM 009</td>
</tr>
<tr>
<td>IPM 010</td>
</tr>
<tr>
<td>IPM 011</td>
</tr>
<tr>
<td>IPM 012</td>
</tr>
<tr>
<td>IPM 013</td>
</tr>
<tr>
<td>IPM 014A</td>
</tr>
<tr>
<td>IPM 014B</td>
</tr>
<tr>
<td>IPM 015</td>
</tr>
<tr>
<td>IPM 018</td>
</tr>
<tr>
<td>IPM 020</td>
</tr>
<tr>
<td>IPM 021</td>
</tr>
<tr>
<td>IPM 022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPM HIV INCIDENCE STUDIES WITH ACTIVITY IN 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUDY</td>
</tr>
<tr>
<td>HIVINC</td>
</tr>
<tr>
<td>IPM 100</td>
</tr>
<tr>
<td>IPM 100.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPM MARKET RESEARCH STUDIES WITH ACTIVITY IN 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUDY</td>
</tr>
<tr>
<td>PAS 2</td>
</tr>
</tbody>
</table>
Each research centre that agrees to host an IPM study is different, requiring different types and degrees of support. In general, site preparation takes the form of community education and engagement, and improved infrastructure and training at the research centre itself. Throughout the process, IPM benefits from the expertise of a variety of research centres — from learning effective strategies for engaging local stakeholders to best practices for conducting high-quality clinical trials in a developing country setting.

Community education and engagement
An overarching priority for studies is that people living in the community fully understand the research activities to be conducted there. IPM helps research centres cultivate and develop community frameworks (including a Community Advisory Board, or CAB) for accomplishing these goals. These civic structures can remain in place after the trial ends to help the community achieve future objectives. Members of the community not only learn about the research study, the clinical trial process and the potential of microbicides to prevent HIV, but also apply current best practices for preventing infection and how to protect their health.

Improved infrastructure
Some facilities may already be in place at a site or they may need to be created. IPM and its partners work with communities to purchase or lease and possibly renovate facilities that exist and then build what is needed. Clinics, laboratories, pharmacies and offices all take shape where there were none before, necessary equipment and technology are installed — improvements that may make long-term contributions to the community.

Training
Site development can support human development. Research centre leaders, for example, participate in workshops and receive training to make their administration and outreach more effective. They receive help in customizing IPM’s community engagement guide to their own research centres, preparing budgets and writing Standard Operating Procedures. In addition, local staff are hired and trained in quality control, quality assurance and specific clinical procedures. At multiple levels, capability can grow.

Lititia Pool and Vuyena Patricia Valabile work at the IPM-sponsored clinic Be Part Yoluntu Centre in Mkhweni, South Africa. (Geoff Oliver Bugbee)
For a microbicide product to have an impact on women's lives, it must be easily available, acceptable and affordable. That is why well-established regulatory pathways are critical to successful product development, from the earliest stages of preclinical investigation of a compound. Studies are conducted to determine women's product preferences — some women may prefer a gel or film while still others might prefer to use a longer-lasting vaginal ring. Efficient manufacturing capabilities and distribution strategies are created so products can reach the women who most need them. The path to impact is complex, but it leads to real power over AIDS.
Developing a path to access

From product preference to access

IPM is continuing market research to understand which formulations are most acceptable to women and their partners — from vaginal tablets and soft gel-capsules to films — and is conducting an acceptability study of the monthly vaginal ring. To expedite distribution of any future product, IPM and its partners studied previous commercial product launches in relevant regions, and began modelling product launch strategies to forecast the impact and costs of different approaches.

Regulatory frameworks and global development

To help prepare for microbicide regulatory approval, IPM and its partners are helping to support national regulatory and local clinical capacity in a variety of ways. IPM attended the African Regulatory Conference in South Africa in February, which was organized by the Drug Information Association, the Southern African Development Community and the European Federation of Pharmaceutical Industries and Associations. IPM also convened representatives of regulatory and ethics committees in Africa in September to discuss the regulatory pathway for microbicides. In addition, the European Medicines Agency agreed this past year to review dapivirine microbicide products under its Article 58, meaning it will give its opinion on the products’ use and safety in developing country settings — an important step towards gaining regulatory approval for microbicides.

Assessing the impact of product introduction strategies

IPM partnered with the London School of Hygiene and Tropical Medicine in a modelling study that compared different microbicide product distribution scenarios, gauging their relative cost-effectiveness and potential impact on lowering HIV incidence. The study was conducted in Karnataka, India and Gauteng, South Africa. The findings help point the way to a product distribution strategy that could lead to significant and cost-effective reductions in HIV infection. IPM published the report in a December policy brief.

Second Annual Microbicide Access Forum in Mexico

In August, IPM, along with the US Agency for International Development, the European Community, the Population Council and the World Health Organization, hosted an international gathering that focused on facilitating microbicide product access. The attendees included donors, microbicide developers, government representatives, scientists and members of the pharmaceutical industry. The forum gave participants an opportunity to review previous health product launches, and to share new research and avenues for progress.
IPM mobilises and sustains support for microbicides to speed development of products that will give women prevention options to protect their health and well-being. In small meetings and large international events, IPM focuses attention on the critical importance of microbicide development to address the global HIV/AIDS epidemic, scientific advances in the field, and the impact microbicides might one day make on global health and development. The international community continues to support microbicide development in very important ways. Governments, multilateral organizations and foundations are acting on their recognition that the devastating impact of AIDS requires a coordinated, high-quality biomedical response.
Sharing progress and challenges

IPM co-hosted or presented at more than a dozen major events in 2008 to share new findings on microbicide development. Events included the HIV/AIDS Colloquium on Vaccines and Microbicides Research in South Africa, the UN General Assembly Special Sessions High-Level Meeting on AIDS, the International AIDS Conference in Mexico City, the 2008 Global Ministerial Forum on Research for Health, the Second International Pharmaceutical Regulatory and Compliance Congress, and Microbicides 2008 in New Delhi.

Growing commitment

Given the substantial and ongoing investment needed to advance new technologies and conduct clinical trials in developing countries, IPM continually reaches out to sustain the growing momentum towards developing successful microbicide products.

IPM raised awareness about new prevention technologies during the UN review of the Declaration of Commitments on HIV/AIDS in New York. Along with the International AIDS Vaccine Initiative, the AIDS Vaccine Advocacy Coalition and UNAIDS, IPM briefed representatives of almost 100 countries. The 2008 UN Secretary-General report, issued in advance of the meeting, discussed the state of microbicide research.

Throughout the year, IPM briefed key stakeholders in Europe including policymakers, parliamentarians, scientists and civil society to raise awareness and build support for microbicides.

In 2008, IPM secured additional funding renewals from Denmark, France, Germany, Ireland, Spain, Sweden, and Norway and ongoing support from a variety of other donors, including Belgium, Canada, Netherlands, United Kingdom, United States, the European Commission and a major new commitment from the Bill & Melinda Gates Foundation. Ongoing support is essential because funding must be secured before trials can launch — and just a single efficacy trial alone can cost as much as $120 million.

How do you report on AIDS? How do you cover ARV-based microbicides? At the International AIDS Conference in Mexico, IPM helped train journalists from around the world in reporting on AIDS and microbicides. And in September, IPM, along with the Alliance for Microbicide Development, the AIDS Vaccine Advocacy Coalition and the Global Campaign for Microbicides, hosted workshops to promote literacy on ARV-prevention approaches, including microbicides. At IPM’s annual Clinical Affairs meeting in Cape Town, research centre staff — from Principal Investigators to Community Liaison Officers — learned new ways to communicate the science of microbicides in the community and to the media.
ASSETS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash and cash equivalents</td>
<td>$17,183,386</td>
<td>$15,574,600</td>
</tr>
<tr>
<td>Investments</td>
<td>$95,905,340</td>
<td>$82,519,479</td>
</tr>
<tr>
<td>Accounts receivables</td>
<td>$1,386,153</td>
<td>$1,367,232</td>
</tr>
<tr>
<td>Prepaid expenses and other assets</td>
<td>$1,238,691</td>
<td>$1,596,780</td>
</tr>
<tr>
<td>Prepaid rent and maintenance, net</td>
<td>$372,184</td>
<td>$444,731</td>
</tr>
<tr>
<td>Property and equipment, net</td>
<td>$5,040,274</td>
<td>$2,806,054</td>
</tr>
<tr>
<td>Total assets</td>
<td>$121,126,028</td>
<td>$104,308,876</td>
</tr>
</tbody>
</table>

LIABILITIES AND NET ASSETS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounts payable and accrued expenses</td>
<td>$7,719,170</td>
<td>$4,149,697</td>
</tr>
<tr>
<td>Grant advances and deferred revenue</td>
<td>$89,905,178</td>
<td>$86,053,553</td>
</tr>
<tr>
<td>Total liabilities</td>
<td>$97,624,348</td>
<td>$90,203,250</td>
</tr>
<tr>
<td>Unrestricted</td>
<td>$10,102,417</td>
<td>$2,565,654</td>
</tr>
<tr>
<td>Temporarily restricted</td>
<td>$13,399,263</td>
<td>$11,539,972</td>
</tr>
<tr>
<td>Total net assets</td>
<td>$23,501,680</td>
<td>$14,105,626</td>
</tr>
<tr>
<td>Total liabilities and net assets</td>
<td>$121,126,028</td>
<td>$104,308,876</td>
</tr>
</tbody>
</table>

FUNDING CONSIDERATIONS

Conducting clinical trials in developing countries requires substantial financial investment. Between 2002 and the end of 2008, IPM raised $343 million, including $246 million in funds received and $97 million in commitments for 2009-2013. IPM continues to undertake resource development efforts with the understanding that funding commitments to complete efficacy trials should be in hand before trials can commence, as ethical review boards generally will not approve a trial without evidence of sufficient funding for completion.

An efficacy trial necessary to support licensure for a single microbicide product requires enlisting thousands of women and following them for an extended period so that researchers can compare infection rates among those who use a candidate microbicide with those using a placebo. Multiple efficacy trials for microbicide products will be required, making IPM’s future financial needs significant. For all activities, IPM is committed to serving as a careful steward of public and private donor funds.

EXPENSES BY DEPARTMENT

- Research and Development: 37.5%
- Clinical Programmes: 14.3%
- Site Development: 12.7%
- Manufacturing: 10.7%
- Operations and Administrative: 10.8%
- External Relations: 14.0%

All figures shown in US dollars.
This list includes all donors who have contributed to IPM since its founding in 2002 through 2008.

<table>
<thead>
<tr>
<th>Belgian Development Cooperation</th>
<th>Bill & Melinda Gates Foundation</th>
<th>Canadian International Development Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denmark Ministry of Foreign Affairs</td>
<td>European Commission</td>
<td>France Ministry of Foreign Affairs</td>
</tr>
<tr>
<td>Germany Federal Ministry for Economic Cooperation and Development</td>
<td>Irish Aid, Department of Foreign Affairs</td>
<td>Netherlands Ministry of Foreign Affairs</td>
</tr>
<tr>
<td>Norwegian Royal Ministry of Foreign Affairs</td>
<td>Rockefeller Foundation</td>
<td>Spain Ministry of Foreign Affairs and Cooperation</td>
</tr>
<tr>
<td>Ministry for Foreign Affairs Sweden</td>
<td>Swedish International Development Cooperation Agency</td>
<td>United Kingdom Department for International Development</td>
</tr>
<tr>
<td>United Nations Population Fund</td>
<td>United States Agency for International Development</td>
<td>World Bank</td>
</tr>
</tbody>
</table>
BOARD of DIRECTORS

Els Borst-Eilers, MD, PhD, Chair
Former Minister of Health, Welfare and Sport, and former Deputy Prime Minister, The Netherlands

Eunice Brookman-Amissah, MBChB
Vice President for Africa, Ipas, Kenya

Peter Corr, PhD
General Partner, Celtic Therapeutics Management, United States

Alex G. Coutinho, MBChB, MSc, MPH, Vice Chair
Executive Director, Infectious Diseases Institute, Makerere University, Uganda

Rajat Kumar Gupta, MBA
Senior Partner Worldwide, McKinsey & Company, United States

Seth L. Harrison, MD, MBA
Managing General Partner, Apple Tree Partners, United States

Eveline Herfkens, MA
UN Executive Coordinator for the Millennium Development Goals Campaign, United States

David Kessler, JD, MD
Professor of Pediatrics, University of California, San Francisco School of Medicine, United States

Totsie Memela-Khambula, MPA
Managing Director, Post Bank, South Africa

Anjali Nayyar, MA
Country Programme Leader for India, PATH, India

Albert Profy, PhD
Vice President, Preclinical and Pharmaceutical Sciences, Endo Pharmaceuticals, United States

Zeda F. Rosenberg, ScD
Chief Executive Officer, IPM, United States

Hélène Rossert-Blavier, MD, MPH
Former Director General, AIDES, France

Anita Sandström, Dr Med Sc
Executive Director, Southern African AIDS Trust, South Africa

Anandi Yuvaraj, MSc, MPhil, PGDGC
Regional Coordinator, International Community of Women Living with HIV/AIDS, Thailand

Robin Shattock, PhD, Chair
St. George’s University of London, United Kingdom

Sharon Hillier, PhD
University of Pittsburgh, United States

Ruth Merkatz, PhD
Population Council Center for Biomedical Research, United States

Martin Springer, PhD
Merck & Co. (retired), United States

Jens van Roey, PhD
Tibotec, Belgium

Richard Bax, PhD
ViroPharma, Europe, United Kingdom

Thomas Moench, MD
ReProtect, United States

Benjamin Cheng, MSc
PATH, United States

Lynn Paxton, MD, MPH
U.S. Centers for Disease Control and Prevention, United States

Gustavo F. Doncel, MD, PhD
CONRAD of the Eastern Virginia Medical School, United States

Richard Lord

SCIENTIFIC ADVISORY BOARD, EXECUTIVE COMMITTEE

SENIOR MANAGEMENT TEAM

Zeda F. Rosenberg, ScD
Chief Executive Officer

Janelle Bryant, MBA
Chief Financial Officer

Annalene Nel, MD, PhD
Chief Medical Officer

Pamela Norick, MA
Chief of External Relations

Joseph Romano, MS, PhD
Chief of Product Development

Esther Benjamin, MA, MS
Executive Director, Resource Development

Karen McCord
Executive Director, Operations and Planning

Thomas Mertenskoetter, MD
Executive Director, External Relations, Europe

Richard Lord
2008 INTERNATIONAL PARTNERS

Advanced Biosciences Laboratory, USA
Adhesives Research (ARx), USA
African Microbicides Advocacy Group, Ghana
Afrimesh Research and Care (PHIVA), South Africa
AIDES, France
AIDS Fondet, Denmark
AIDS Fonds, The Netherlands
AIDS Vaccine Advocacy Coalition, USA
Ajinomoto OmniChem, Belgium
Albert Einstein College of Medicine (AECOM), USA
Alliance for Microbicide Development, USA
Analytical Solutions, USA
Azopharma, USA
Be Part Yoluntu Centre, South Africa
Bristol-Myers Squibb, USA
Catalent Pharma Solutions, USA
CBR Institute for Biomedical Research, USA
Clinton Global Initiative, USA
Colloid Consultants Ltd, USA
CONRAD, USA
Cornell University, USA
Desmond Tutu HIV Foundation, South Africa
Dinox, The Netherlands
Diteba Research Laboratories, USA
Dow Corning Corporation, USA
Drexel University Medical School, USA
Equilibres & Populations, France
European Microbicide Project, United Kingdom
Family Health International, USA
German Foundation for World Population (DSW), Germany
Gilead Sciences, USA
Global Campaign for Microbicides, USA
Global Coalition on Women and AIDS, Switzerland
Grupo de Trabajo sobre Tradamiento de VIH, Spain
Gynuity Health Projects, USA
Health and Development Africa, South Africa
HIV Vaccine Trials Unit, Fred Hutchinson Cancer Research Center, USA
Imquest Biosciences, USA
Institute of Tropical Medicine, Belgium
Interagency Coalition on AIDS and Development, Canada
International Centre for Reproductive Health, Kenya
J-Star Research, USA
Johnson & Johnson (Tibotec Pharmaceuticals), Belgium
Kenya Medical Research Institute, Kenya
KBI BioPharma Inc, USA
Kilimanjaro Christian Medical Centre, Tanzania
Locus Pharmaceuticals, USA
London School of Hygiene and Tropical Medicine, United Kingdom
Malawi College of Medicine/Johns Hopkins Research Project, Malawi
Madibeng Centre for Research (MCR), South Africa
Magee Women's Research Institute, University of Pittsburgh School of Medicine, USA
McGill University, Canada
Medical Research Council, South Africa
Merck & Co., USA
Microbicide Development Programme, United Kingdom
Microbicide Trials Network, USA
Mount Sinai School of Medicine, USA
MR Solutions, USA
National AIDS Trust, United Kingdom
National Institute for Research in Reproductive Health, India
National Institute of Allergy and Infectious Diseases, USA
Noaks Ark Foundation, Sweden
North American Science Associates Inc. (NAMSA), USA
Northwestern University, USA
Norwegian Association for Sexual and Reproductive Health and Rights (NSRR), Norway
Novavax, USA
Nusil Technology LLC, USA
Oak Crest Institute of Science, USA
Osel, USA
Paragon Sciences, USA
Particle Sciences, USA
Pfizer, USA
PharmaForm LLC, USA
Planet Health, Spain
Population Council, USA
Princeton API, USA
PRA International, The Netherlands
Prevention of HIV/AIDS Project (PHIVA), South Africa
Project WISH, University of Illinois at Chicago (UIC), USA
Projet Ubuzima, Rwanda
Qhakaza Mbokodo, South Africa
QuartRX Biomedical Corporation, USA
Queen’s University Belfast, United Kingdom
Regulatory Compliance Initiatives, USA
Reproductive Health and HIV Research Unit (RHRU), South Africa
Reprotect, USA
Research IQ, South Africa
Research Triangle Institute, USA
Richmond Pharmacology Ltd., St. George’s University of London, United Kingdom
Schering-Plough, USA
ScinoPharm, Taiwan
Sensoa, Belgium
SGS Life Science Services, Belgium
SSCI Inc, USA
Statistics Collaborative, USA
St. George’s University of London, United Kingdom
St. Stephen’s Centre, United Kingdom
SNBL Clinical Pharmacology Center, USA
Steadman Group, Kenya
Stratos Product Development, USA
UNAIDS, Global Coalition on Women and AIDS, Switzerland
University of Alabama at Birmingham (UAB), USA
University of Auckland, New Zealand
University of California at Los Angeles, USA
University of Cape Town, South Africa
University of Copenhagen, Copenhagen HIV Programme (CHIP), Denmark
University of Ghent, Belgium
University Hospital-Eppendorf, Germany
University of Pennsylvania, USA
University of Utah, USA
University of the Witwatersrand, South Africa
University of Zimbabwe, Zimbabwe
Voxiva, USA
Warner Chilcott, United Kingdom
World Health Organization, Switzerland
Xigo Nanotools, USA

